太阳系外的行星被发现,本身就是一项重大成就
科学家发现的系外行星(太阳系以外的行星)数量,就像涓涓细流已变成滚滚洪流。
从发现第一颗系外行星以来才不过20几年,地面和空间观测技术的进步就让已发现的系外行星数量飙升至2000颗以上。
美国加州大学洛杉矶分校的天文学家发现了366颗新的系外行星,这在很大程度上要归功于一种新开发的算法。其中,最值得注意的是一个由一颗恒星和至少两颗气态巨行星组成的行星系统,其中每一颗行星的大小均与土星大致相当,而且彼此距离非常近。相关研究近日发表于《天文学杂志》。
“系外行星”被用来描述太阳系以外的行星。天文学家已经确认的系外行星总数不到5000颗,所以确认数百颗新的系外行星是一个重大的进步。研究如此多的新天体有助科学家更好地理解行星如何形成及其轨道如何演化,并可以提供关于太阳系有多么不同寻常的新见解。
“发现数百颗新的系外行星本身就是一项重大成就,这项工作的与众不同之处在于,它将阐明系外行星的整体特征。”加州大学洛杉矶分校天文学教授、该研究共同作者Erik Petigura说。
这些系外行星中包括“热木星”“超级地球”及其他奇异类型的行星。这些在太阳系中没有的行星类型,逼迫科学家把他们有关行星系统形成和演化的理论推倒重来。
然而,对系外行星的发现又可以说是刚刚才开始。在系外行星的搜寻方面,科学家正强力推进又一个重要阶段:查明这些世界长得什么模样。
大多数搜寻系外行星的技术,除了能告诉我们行星质量、大小和轨道参数外,能揭示的其他信息少之又少。
系外行星究竟是像地球这样的岩石行星,还是像木星那样的气态巨行星?系外行星的温度很高还是很低?系外行星的大气层由什么组成?它们的大气成分中,像水、甲烷和氧这样的分子的比例是否独特而又不稳定,因而可能是生命活动的迹象?

要想探寻诸如此类问题的答案,科学家能够使用的唯一可靠工具就是光谱学:运用光谱学,科学家能分析直接来自行星表面的光线的波长,或者穿过行星大气层的光线的波长。每种元素或分子通过光谱摄像仪都会产生一个特殊的“线条”模式——光发射造成的尖峰,或在已知波长的光吸收造成的骤降。这样一来,通过观察一个遥远天体的光谱线,科学家就能解读这个天体上有什么物质。
但光谱学通常要求能清楚看见物体,这对系外行星来说几乎不可能。通常,我们是看不见系外行星的。不过,当一颗系外行星正面经过其所环绕的母恒星(太阳就是地球的母恒星)时,母恒星亮度会极小程度地降低,这就暗示了系外行星的存在。另外,虽然系外行星不可见,但其引力会造成其母恒星很轻微地前后摇晃,而这种摇晃也揭示了系外行星的存在。科学家经常说,要想探索系外行星,就好比是凝视一盏探照灯(恒星),并且试图发现一只在探照灯附近飞的萤火虫。
然而,在观测系外行星方面,科学家近年来已有一些进展。当系外行星正面经过其母恒星时,一些科学家提取了穿透系外行星大气层的光线的光谱。这相当于当一只萤火虫掠过探照灯的光柱时,测量萤火虫的翅膀颜色。另一些科学家则想法阻挡母恒星的光线,从而得以看见位于遥远轨道中的系外行星,直接记录它们的光谱。
过去3年中,科学家开始记录来自新一代定制天文观测仪的光谱。位于智利帕切翁山顶峰的南双子座望远镜(直径8.1米)的“双子座行星成像仪”,就是一台新一代定制天文观测仪。正在研发的多部太空望远镜和地面望远镜,都把系外行星光谱作为首选探测目标。而科学家更渴望的是美国宇航局的“詹姆斯韦伯太空望远镜”(简称JWST),它将于2018年发射,届时它将以前所未有的光采集能力和灵敏度实施探测。
以上就是小编带来的资讯。 欢迎关注本站,无论是时事热点,新闻资讯,游戏攻略与各类资讯,你都可以在这里找到!
今日编辑铺热门推荐:冬季运动跳台 梦幻模拟战 樱花校园高校日记 双人海岛求生 从发现第一颗系外行星以来才不过20几年,地面和空间观测技术的进步就让已发现的系外行星数量飙升至2000颗以上。
美国加州大学洛杉矶分校的天文学家发现了366颗新的系外行星,这在很大程度上要归功于一种新开发的算法。其中,最值得注意的是一个由一颗恒星和至少两颗气态巨行星组成的行星系统,其中每一颗行星的大小均与土星大致相当,而且彼此距离非常近。相关研究近日发表于《天文学杂志》。
“系外行星”被用来描述太阳系以外的行星。天文学家已经确认的系外行星总数不到5000颗,所以确认数百颗新的系外行星是一个重大的进步。研究如此多的新天体有助科学家更好地理解行星如何形成及其轨道如何演化,并可以提供关于太阳系有多么不同寻常的新见解。
“发现数百颗新的系外行星本身就是一项重大成就,这项工作的与众不同之处在于,它将阐明系外行星的整体特征。”加州大学洛杉矶分校天文学教授、该研究共同作者Erik Petigura说。
这些系外行星中包括“热木星”“超级地球”及其他奇异类型的行星。这些在太阳系中没有的行星类型,逼迫科学家把他们有关行星系统形成和演化的理论推倒重来。
然而,对系外行星的发现又可以说是刚刚才开始。在系外行星的搜寻方面,科学家正强力推进又一个重要阶段:查明这些世界长得什么模样。
大多数搜寻系外行星的技术,除了能告诉我们行星质量、大小和轨道参数外,能揭示的其他信息少之又少。
系外行星究竟是像地球这样的岩石行星,还是像木星那样的气态巨行星?系外行星的温度很高还是很低?系外行星的大气层由什么组成?它们的大气成分中,像水、甲烷和氧这样的分子的比例是否独特而又不稳定,因而可能是生命活动的迹象?

要想探寻诸如此类问题的答案,科学家能够使用的唯一可靠工具就是光谱学:运用光谱学,科学家能分析直接来自行星表面的光线的波长,或者穿过行星大气层的光线的波长。每种元素或分子通过光谱摄像仪都会产生一个特殊的“线条”模式——光发射造成的尖峰,或在已知波长的光吸收造成的骤降。这样一来,通过观察一个遥远天体的光谱线,科学家就能解读这个天体上有什么物质。
但光谱学通常要求能清楚看见物体,这对系外行星来说几乎不可能。通常,我们是看不见系外行星的。不过,当一颗系外行星正面经过其所环绕的母恒星(太阳就是地球的母恒星)时,母恒星亮度会极小程度地降低,这就暗示了系外行星的存在。另外,虽然系外行星不可见,但其引力会造成其母恒星很轻微地前后摇晃,而这种摇晃也揭示了系外行星的存在。科学家经常说,要想探索系外行星,就好比是凝视一盏探照灯(恒星),并且试图发现一只在探照灯附近飞的萤火虫。
然而,在观测系外行星方面,科学家近年来已有一些进展。当系外行星正面经过其母恒星时,一些科学家提取了穿透系外行星大气层的光线的光谱。这相当于当一只萤火虫掠过探照灯的光柱时,测量萤火虫的翅膀颜色。另一些科学家则想法阻挡母恒星的光线,从而得以看见位于遥远轨道中的系外行星,直接记录它们的光谱。
过去3年中,科学家开始记录来自新一代定制天文观测仪的光谱。位于智利帕切翁山顶峰的南双子座望远镜(直径8.1米)的“双子座行星成像仪”,就是一台新一代定制天文观测仪。正在研发的多部太空望远镜和地面望远镜,都把系外行星光谱作为首选探测目标。而科学家更渴望的是美国宇航局的“詹姆斯韦伯太空望远镜”(简称JWST),它将于2018年发射,届时它将以前所未有的光采集能力和灵敏度实施探测。
以上就是小编带来的资讯。 欢迎关注本站,无论是时事热点,新闻资讯,游戏攻略与各类资讯,你都可以在这里找到!